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ABSTRACT

Conversational machine comprehension requires a deep understanding of the con-
versation history. To enable traditional, single-turn models to encode the his-
tory comprehensively, we introduce FLOW, a mechanism that can incorporate in-
termediate representations generated during the process of answering previous
questions, through an alternating parallel processing structure. Compared to shal-
low approaches that concatenate previous questions/answers as input, FLOW in-
tegrates the latent semantics of the conversation history more deeply. Our model,
FLOWQA, shows superior performance on two recently proposed conversational
challenges (+7.2% F1 on CoQA and +4.0% on QuAC). The effectiveness of FLOW
also shows in other tasks. By reducing sequential instruction understanding to
conversational machine comprehension, FLOWQA outperforms the best models
on all three domains in SCONE, with +1.8% to +4.4% improvement in accuracy.

1 INTRODUCTION

Q3: Where?

Conversational
QA Machine

A3: the woods
Q1: What is the story about?

A1: young girl and her dog

Q2: What were they doing?

A2: set out a trip

Conversation history

Machine Reasoning

Machine Reasoning

The young girl and her dog set 
out a trip into the woods one 
day. Upon entering the woods 
the girl and her dog found that 
the woods were dark and cold. 
The girl was a little scared and 
was thinking of turning back, 
but yet they went on. …

Context:

Figure 1: An illustration of conversational machine comprehension with an example from the Con-
versational Question Answering Challenge dataset (CoQA).

Humans seek information in a conversational manner, by asking follow-up questions for additional
information based on what they have already learned. Recently proposed conversational machine
comprehension (MC) datasets (Reddy et al., 2018; Choi et al., 2018) aim to enable models to assist
in such information seeking dialogs. They consist of a sequence of question/answer pairs where
questions can only be understood along with the conversation history. Figure 1 illustrates this new
challenge. Existing approaches take a single-turn MC model and augment the current question and
context with the previous questions and answers (Choi et al., 2018; Reddy et al., 2018).1 However,
this offers only a partial solution, ignoring previous reasoning2 processes performed by the model.

∗Work done during internship at Allen Institute of Artificial Intelligence.
1Detailed explanation of existing models is in Section 4.
2We use “reasoning” to refer to the model process of finding the answer.
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We present FLOWQA, a model designed for conversational machine comprehension. FLOWQA
consists of two main components: a base neural model for single-turn MC and a FLOW mechanism
that encodes the conversation history. Instead of just using the shallow history like previous ques-
tions and answers, we feed the model with the entire hidden representations generated during the
process of answering previous questions. These hidden representations potentially capture related
information, such as phrases and facts in the context, for answering the previous questions, and
hence provide additional clues on what the current conversation is revolving around. This FLOW
mechanism is also remarkably effective at tracking the world states for sequential instruction un-
derstanding (Long et al., 2016): after mapping world states as context and instructions as questions,
FLOWQA can interpret a sequence of inter-connected instructions and generate corresponding world
state changes as answers. The FLOW mechanism can be viewed as stacking single-turn QA mod-
els along the dialog progression (i.e., the question turns) and building information flow along the
dialog. This information transfer happens for each context word, allowing rich information in the
reasoning process to flow. This design is analogous to recurrent neural networks, where each single
update unit is now an entire question answering process. Because there are two recurrent structures
in our modeling, one in the context for each question and the other in the conversation progression,
a naive implementation leads to a highly unparallelizable structure. To handle this issue, we propose
an alternating parallel processing structure, which alternates between sequentially processing one
dimension in parallel of the other dimension, and thus speeds up training significantly.

FLOWQA achieves strong empirical results on conversational machine comprehension tasks, and
improves the state of the art on various datasets (from 67.8% to 75.0% on CoQA and 60.1% to
64.1% on QuAC). Perhaps more impressively, although designed for conversational machine com-
prehension, FLOWQA also shows superior performance on a seemingly different task – understand-
ing a sequence of natural language instructions (framed previously as a sequential semantic parsing
problem). When tested on SCONE (Long et al., 2016), FLOWQA outperforms all existing systems
in three different domains, resulting in a range of accuracy improvement from +1.8% to +4.4%.

2 BACKGROUND: MACHINE COMPREHENSION TASKS AND MODELS

In this section, we introduce the task formulations of machine comprehension in both single-turn
and conversational settings, and discuss the main ideas of state-of-the-art MC models.

2.1 TASK FORMULATION

Given an evidence document (context) and a question, the task is to find the answer. The context
C = {c1, c2, . . . cm} is described as a sequence of m words and the question Q = {q1, q2 . . . qn}
a sequence of n words. In the extractive setting, the answer A must be a span in the context. Con-
versational machine comprehension is a generalization of the single-turn setting: the agent needs to
answer multiple, potentially inter-dependent questions in an interactive fashion. The meaning of the
current question may depend on the conversation history (e.g., in Fig. 1, a question such as ‘Where?’
cannot be answered in isolation). Thus, previous conversational history (i.e., question/answer pairs)
is provided in addition to the context and the current question.

2.2 BASIC DESIGN OF MACHINE COMPREHENSION MODELS

For single-turn MC, many top-performing models share a similar architecture, consisting of four
major components: (1) question encoding, (2) context encoding, (3) reasoning, and finally (4) an-
swer prediction. Initially the word embeddings (e.g., Pennington et al., 2014; Peters et al., 2018) of
question tokens Q and context tokens C are taken as input and fed into contextual integration layers,
such as LSTMs (Hochreiter & Schmidhuber, 1997) or self attentions (Yu et al., 2018), to encode the
question and context. Multiple integration layers provide contextualized representations of context,
and are often inter-weaved with attention, which inject question information. The context integration
layers thus produce a series of query-aware hidden vectors for each word in the context. Together,
the context integration layers can be viewed as conducting implicit reasoning to find the answer can-
didates. The final output is fed into the answer prediction layer to select the answer. To adapt to the
conversational setting, existing methods incorporate previous question/answer pairs into the current
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Figure 2: Alternating computa-
tional structure between context in-
tegration (RNN over context) and
FLOW (RNN over question turns).
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Figure 3: An illustration of the architecture for FLOWQA.

question and context encoding without modifying higher-level (reasoning and answer prediction)
layers of the model.

3 FLOWQA

Our model aims to incorporate the conversation history more comprehensively via a conceptually
simple FLOW mechanism. We first introduce the concept of FLOW (Section 3.1), propose the
INTEGRATION-FLOW layers (Section 3.2), and present an end-to-end architecture for conversational
machine comprehension, FLOWQA (Section 3.3).

3.1 CONCEPT OF FLOW

Successful conversational MC models should grasp the conversation flow, such as the main topics
revolving the dialog, relevant events being discussed, or related facts about the topic. Since the con-
versation is based on the context C, we consider the conversation flow as a representation based of
the context tokens. Conversation flow can be inferred by just using previous question answer pairs,
but for machine to better grasp the conversation flow, we utilize the intermediate machine process for
answering previous questions (See Fig. 1). In MC models, the intermediate machine process is cap-
tured in the several context integration layers (often BiLSTMs), which locate the answer candidates
in the context. Our model considers this intermediate representations, Ch

i , generated during the h-th
context integration layer of the reasoning component for the i-th question. FLOW builds informa-
tion flow from the intermediate representation Ch

1 , . . . ,C
h
i−1 generated for the previous question

Q1, . . . ,Qi−1 to the current process for answering Qi, for every h and i.

3.2 INTEGRATION-FLOW LAYER

A naive sequential implementation of FLOW would pass the output hidden vectors from each in-
tegration layer during the (i − 1)-th question turn to the corresponding integration layer for Qi.
This is highly unparalleled, as the contexts have to be read in order, and the question turns have
to be processed sequentially. To achieve better parallelism, we alternate between them: context
integration, processing sequentially in context, in parallel of question turns; and flow, processing
sequentially in question turns, in parallel of context words (see Fig. 2). This gives a 5 to 10 times
speedup3 at training time. Throughout this section, we will use i (1 ≤ i ≤ t) to iterate over question,
j (1 ≤ j ≤ m) to iterate over context, where t is the length of the dialog and m is the length of
the context. Below we describe the implementation of an INTEGRATION-FLOW (IF) layer, which is
composed of a context integration layer and a FLOW component.

3The speedup depends on the average length of the conversations.
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Context Integration We pass the current context representation Ch
i for each question i into a

BiLSTM layer. All question i (1 ≤ i ≤ t) are processed in parallel during training.

Ĉh
i = ĉhi,1, . . . , ĉ

h
i,m = BiLSTM([Ch

i ]) (1)

FLOW After the integration, we have t context sequences of length m, one for each question.
We reshape it to become m sequences of length t, one for each context word. We then pass each
sequence into a GRU4 so the entire intermediate representation for answering the previous questions
can be used when processing the current question. We only consider the forward direction since
we do not know the (i + 1)-th question when answering the i-th question. All context word j
(1 ≤ j ≤ m) are processed in parallel.

fh+1
1,j , . . . , fh+1

t,j = GRU(ĉh1,j , . . . , ĉ
h
t,j) (2)

We reshape the outputs from the FLOW layer back, and concatenate them to the output of the inte-
gration layer.

Fh+1
i = {fh+1

i,1 , . . . , fh+1
i,m } (3)

Ch+1
i = ch+1

i,1 , . . . , ch+1
i,m = [ĉhi,1; fh+1

i,1 ], . . . , [ĉhi,m; fh+1
i,m ] (4)

In summary, this process takes Ch
i and generates Ch+1

i , which will be used for further contextu-
alization to predict the start and end answer span tokens. When FLOW is removed, the IF layer
becomes a regular context integration layer and in this case, a single layer of BiLSTM.

3.3 DETAILED DESIGN OF FLOWQA

We construct our conversation MC model, FLOWQA, based on the single-turn MC structure
(Sec. 2.2) with fully-aware attention (Huang et al., 2018). The full architecture is shown in Fig. 3.
In this section, we describe its main components: initial encoding, reasoning and answer prediction.

3.3.1 QUESTION/CONTEXT ENCODING

Word Embedding We embed the context into a sequence of vectors, C = {c1, . . . , cm} with
pretrained GloVe (Pennington et al., 2014), CoVE (McCann et al., 2017) and ELMo (Peters et al.,
2018) embeddings. Similarly, each question at the i-th turn is embedded into a sequence of vectors
Qi = {qi,1, . . . , qi,n}, where n is the maximum question length for all questions in the conversation.

Attention (on Question) Following DrQA (Chen et al., 2017), for each question, we compute
attention in the word level to enhance context word embeddings with question.

gi,j =
∑

k
αi,j,k gQ

i,k, αi,j,k ∝ exp(ReLU(W gC
j )T ReLU(W gQ

i,k)), (5)

where gQ
i,k is the GloVe embedding for the k-th question word in the i-th question, and gC

j is the
GloVe embedding for the j-th context word. The final question-specific context input representation
C0

i contains: (1) word embeddings, (2) a binary indicator emi,j , whether the j-th context word
occurs in the i-th question, and (3) output from the attention.

C0
i = [c1; emi,1; gi,1], . . . , [cm; emi,m; gi,m] (6)

Question Integration with QHierRNN Similar to many MC models, contextualized embeddings
for the questions are obtained using multiple layers of BiLSTM (we used two layers).

Q1
i = q1i,1, . . . , q

1
i,n = BiLSTM(Qi), Q2

i = q2i,1, . . . , q
2
i,n = BiLSTM(Q1

i ) (7)
We build a pointer vector for each question to be used in answer prediction layer by first taking a
weighted sum of each word vectors in the question.

q̃i =

n∑
k=1

αi,k · q2i,k, αi,k ∝ exp(wT q2i,k), (8)

where w is a trainable vector. We then encode question history hierarchically with LSTMs to gener-
ate history-aware question vectors (QHierRNN).

p1, . . . , pt = LSTM(q̃i, . . . , q̃t) (9)
The answer pointer vectors, p1, . . . , pt, will be used in the answer prediction layer.

4We use GRU because it is faster and performs comparably to LSTM based on our preliminary experiments.
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3.3.2 REASONING

The reasoning component has several IF layers on top of the context encoding, inter-weaved with
attention (first on question, then on context itself). We use fully-aware attention (Huang et al., 2018),
which concatenates all layers of hidden vectors and uses S(x, y) = ReLU(Ux)TDReLU(Uy) to
compute the attention score between x, y, where U,D are trainable parameters and D is a diagonal
matrix. Below we give the details of each layer (from bottom to top).

Integration-Flow ×2 First, we take the question-augmented context representation C0
i and pass

it to two IF layers.5

C1
i = IF(C0

i ) (10)

C2
i = IF(C1

i ) (11)

Attention (on Question) After contextualizing the context representation, we perform fully-aware
attention on the question for each context words.

q̂i,j =

n∑
k=1

αi,j,k · q2i,k, αi,j,k ∝ exp(S([ci; c
1
j,i; c

2
j,i], [qj,k; q1j,k; q2j,k])) (12)

Integration-Flow We concatenate the output from the previous IF layer with the attended question
vector, and pass it as an input.

C3
i = IF([c2i,1; q̂i,1], . . . , [c2i,m; q̂i,m]) (13)

Attention (on Context) We apply fully-aware attention on the context itself (self-attention).

ĉi,j =

m∑
k=1

αi,j,k · c3j,k, αi,j,k ∝ exp(S([c1i,j ; c
2
i,j , c

3
i,j ], [c

1
k,j ; c

2
k,j , c

3
k,j ])) (14)

Integration We concatenate the output from the the previous IF layer with the attention vector,
and feed it to the last BiLSTM layer.

C4
i = BiLSTM([c3i,1; ĉi,1], . . . , [c3i,m; ĉi,m]) (15)

3.3.3 ANSWER PREDICTION

We use the same answer span selection method (Wang et al., 2017; Wang & Jiang, 2017; Huang
et al., 2018) to estimate the start and end probabilities PS

i,j , P
E
i,j of the j-th context token for the i-th

question.

PS
i,j ∝ exp(

[
c4i,j
]T
WSpi), p̃i = GRU(pi,

∑
i,j

PS
i,jc

4
i,j), P

E
i,j ∝ exp(

[
c4i,j
]T
WE p̃i) (16)

To address unanswerable questions, we compute the probability of having no answer:

P ∅i ∝ exp
([ m∑

j=1

c4i,j ; max
j
c4i,j

]T
Wpi

)
. (17)

For each question Qi, we first use P ∅i to predict whether it has no answer.6 If it is answerable, we
predict the span to be js, je with the maximum PS

i,jsP
E
i,je subject to the constraint 0 ≤ je−js ≤ 15.

4 EXPERIMENTS: CONVERSATIONAL MACHINE COMPREHENSION

In this section, we evaluate FLOWQA on recently released conversational MC datasets.

5We tested different numbers of IF layers and found that the performance was not improved after 2 layers.
6The decision threshold is tuned on the development set to maximize the F1 score.
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Child. Liter. Mid-High. News Wiki Reddit Science Overall
PGNet (1-ctx) 49.0 43.3 47.5 47.5 45.1 38.6 38.1 44.1
DrQA (1-ctx) 46.7 53.9 54.1 57.8 59.4 45.0 51.0 52.6
DrQA + PGNet (1-ctx) 64.2 63.7 67.1 68.3 71.4 57.8 63.1 65.1
BiDAF++ (3-ctx) 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FLOWQA (1-Ans) 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Table 1: Model and human performance (% in F1 score) on the CoQA test set. (N -ctx) refers to
using previous N QA pairs. (N -Ans) refers to providing previous N gold answers.

F1 HEQ-Q HEQ-D
Pretrained InferSent 20.8 10.0 0.0
Logistic Regression 33.9 22.2 0.2
BiDAF++ (0-ctx) 50.2 43.3 2.2
BiDAF++ (1-ctx) 59.0 53.6 3.4
BiDAF++ (2-ctx) 60.1 54.8 4.0
BiDAF++ (3-ctx) 59.5 54.5 4.1
FLOWQA (2-Ans) 64.1 59.6 5.8
Human 80.8 100 100

Table 2: Model and human performance (in %)
on the QuAC test set. (baselines from (Choi et al.,
2018))

CoQA QuAC
Prev. SotA (Yatskar, 2018) 70.4 60.6
FLOWQA (0-Ans) 75.0 59.0
FLOWQA (1-Ans) 76.2 64.2

- FLOW 72.5 62.1
- QHierRNN 76.1 64.1
- FLOW - QHierRNN 71.5 61.4

FLOWQA (2-Ans) 76.0 64.6
FLOWQA (All-Ans) 75.3 64.6

Table 3: Ablation study: model performance on
the dev. set of both datasets (in % F1).

Data and Evaluation Metric We experiment with the QuAC (Choi et al., 2018) and
CoQA (Reddy et al., 2018) datasets. While both datasets follow the conversational setting (Sec-
tion 2.1), QuAC asked crowdworkers to highlight answer spans from the context and CoQA asked
for free text as an answer to encourage natural dialog. While this may call for a generation approach,
Yatskar (2018) shows that the an extractive approach which can handle Yes/No answers has a high
upper-bound – 97.8 F1. Following this, we apply the extractive approach to CoQA. We handle the
Yes/No questions by computing PY

i , P
N
i using the same equation for P ∅i (Eq. 17), and find a span

in the context for other questions.

The main evaluation metric is F1, the harmonic mean of precision and recall at the word level.7 In
CoQA, we report the performance for each context domain (children’s story, literature from Project
Gutenberg, middle and high school English exams, news articles from CNN, Wikipedia, AI2 Science
Questions, Reddit articles) and the overall performance. For QuAC, we use its original evaluation
metrics: F1 and Human Equivalence Score (HEQ). HEQ-Q is the accuracy of each question, where
the answer is considered correct when the model’s F1 score is higher than the average human F1

score. Similarly, HEQ-D is the accuracy of each dialog – it is considered correct if all the questions
in the dialog satisfy HEQ.

Comparison Systems We compare FLOWQA with baseline models from CoQA and QuAC.
Reddy et al. (2018) presented PGNet (Seq2Seq with copy mechanism), DrQA (Chen et al., 2017)
and DrQA+PGNet (PGNet on predictions from DrQA) to address abstractive answer. To incorpo-
rate dialog history, CoQA baselines concatenate the most recent previous question and answer to
the current question.8 Choi et al. (2018) used BiDAF++, a strong extractive QA model to QuAC
dataset. They concatenate a feature vector encoding turn number to the question embedding and a
feature vector encoding previousN answer locations to the context embeddings (denoted asN -ctx).
They found this to perform better than just concatenating previous question answer pairs. Yatskar
(2018) applied the same model to CoQA by modifying the system to first make a Yes/No decision,
and output an answer span only if Yes/No was not selected.

FLOWQA (N -Ans) is our model: similar to BiDAF++ (N -ctx), we concatenate the binary feature
vector encoding previous N answer spans to the context embeddings. Here we briefly describe

7As there are multiple (N ) references, the actual score is the average of max F1 against N − 1 references.
For details, refer to the official eval scripts.

8They found concatenating question answer pairs from the further history did not help the performance.
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ablated systems: - FLOW removes the flow component from IF layer (Eq. 2-4 in Section 3.2), -
QHIERRNN removes hierarchical LSTM on question pointer vectors (Eq. 9 in Section 3.3).

Results Tables 1 and 2 report model performance on CoQA and QuAC, respectively. FLOWQA
yields substantial improvement over existing models on both datasets (+7.2% F1 on CoQA, +4.0%
F1 on QuAC). The larger gain on CoQA, which contains longer dialog chains,9 suggests that our
FLOW architecture can capture long-range conversation history more effectively.

Table 3 shows the contributions of three components: (1) QHierRNN, hierarchical LSTM for encod-
ing past questions, (2) FLOW, augmenting the intermediate representation from machine reasoning
process in the conversation history, and (3) N -Ans, marking the gold answers for N previous turn
in the context. We find that FLOW is a critical component. Removing QHierRNN has a minor
impact (0.1% on both datasets), while removing FLOW results in a substantial performance drop,
with or without using QHierRNN (2-3% on QuAC, 4.1% on CoQA). Without both components, our
model performs comparably to the BiDAF++ model (1.0% gain).10 Our model exploits the entire
conversation history while prior models could leverage up to three previous turns.

By comparing 0-Ans and 1-Ans on two datasets, we can see that providing gold answers is more
crucial for QuAC. We hypothesize that QuAC contains more open-ended questions with multiple
valid answers because the questioner cannot see the text. The semantics of follow-up questions
may change based on the answer span selected by the teacher among many valid answer spans, so
knowing the exact answer is crucial.

5 EXPERIMENTS: SEQUENTIAL INSTRUCTION UNDERSTANDING

In this section, we consider the task of understanding a sequence of natural language instructions.11

We reduce this problem to a conversational MC task and apply FLOWQA.

Task Given a sequence of instructions, where the meaning of each instruction may depend on
the entire history and world state, the task is to understand the instructions and modify the world
accordingly. More formally, given the initial world state W0 and a sequence of natural language
instructions {I1, . . . , IK}, the model has to perform the correct sequence of actions on W0, to
obtain {W1, . . . ,WK}, the correct world states after each instruction. Fig. 4 gives a simplified
example from (Long et al., 2016).

Reducing Sequential Instruction Understanding to Conversational MC We reduce instruction
understanding to machine comprehension using the follow mapping. An illustration of this reduction
is also in Fig. 4.

• Context Ci: We encode the current world state Wi−1 as a sequence of tokens.
• Question Qi: We simply treat each natural language instruction Ii as a question.
• Answer Ai: We encode the world state change from Wi−1 to Wi as a sequence of tokens.

At each time step i, the current context Ci and question Qi are given to the system, which outputs
the answer Ai. We simplified FLOWQA to prevent overfitting.12 Appendix A.2 contains the details
on model simplification and reduction rules, i.e., mapping from the world state and state change to
a sequence of token.

We also encode history explicitly by concatenating preceding questions with the current one and by
marking previous answers in the current context similar to N -Ans in conversational MC. During
training, the previous gold answer (i.e., the world state change after each previous instruction) is
given to the model. In testing, the model predictions to the previous instructions are used.

9Each QuAC dialog contains 7.2 question/answer pairs on average, while CoQA contains 15 QA pairs.
10On the SQuAD leaderboard, BiDAF++ outperforms the original FusionNet (Huang et al., 2018) that

FLOWQA is based on.
11This differs from semantic parsing as we are not mapping to an high-level formal representations but to the

world state action, similar to (Suhr & Artzi, 2018).
12This domain contains substantially smaller training data (∼20K QA pairs).
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Conversational
QA Machine

Empty & Empty & Purple Shirt & Purple Hat, 
Blue Shirt & Empty & Empty & Empty & 
Empty & Empty & Yellow Hat, Orange Shirt

World State N-1:

He took the blue guy’s hat.
Question N:

Context N:

Swap Hat for Position 3, 4

Answer N:
Move(hasShirt(Blue),rightOf(h
asShirt(Blue)))

He took the blue guy’s hat.
Instruction N:

Sequential
Semantic Parser

World State N:

Logical Form N:

Empty & Empty & Purple Hat , Purple Shirt 
& Blue Shirt & Empty & Empty & Empty & 
Empty & Empty & Yellow Hat, Orange Shirt

Context N+1:

Execute on World State N-1

Figure 4: Illustration on reducing sequential in-
struction understanding to conversational MC.
The corresponding units in the semantic parsing
approach are shown to the right.

Sce. Tan. Alc.
Suhr & Artzi (2018) 56.1 60.3 71.8
FLOWQA - FLOW 53.0 67.8 82.0
FLOWQA 64.1 74.4 84.1
FLOW ∆ (+11.1) (+6.6) (+2.1)

Table 4: Dev accuracy (in %) after all instruc-
tions for the three domains in SCONE.

Sce. Tan. Alc.
Long et al. (2016) 14.7 27.6 52.3
Guu et al. (2017) 46.2 37.1 52.9
Suhr & Artzi (2018) 66.4 60.1 62.3
Fried et al. (2018) 72.7 69.6 72.0
FLOWQA - FLOW 58.2 67.9 74.1
FLOWQA 74.5 72.3 76.4
FLOW ∆ (+16.3) (+4.4) (+2.3)

Table 5: Test accuracy (in %) after all instruc-
tions for the three domains in SCONE.

5.1 RESULTS

We evaluate our model on the sequential instruction understanding dataset SCONE (Long et al.,
2016), which contains three domains (SCENE, TANGRAMS, ALCHEMY). Each domain has a differ-
ent environment setting (see Appendix A.2). We compare our approaches with prior works (Long
et al., 2016; Guu et al., 2017; Suhr & Artzi, 2018; Fried et al., 2018), which are semantic parsers that
map each instruction into a logical form, and then execute the logical form to update the world state.
The model performance is evaluated by the correctness of the final world state after five instructions.

The development and test set results are reported in Tables 4 and 5. Even without FLOW, our model
(FLOWQA-FLOW) achieves comparable results in two domains (Tangrams and Alchemy) since we
still encode the history explicitly. When augmented with FLOW, our FLOWQA model gains decent
improvements and outperforms the state-of-the-art models for all three domains.

6 RELATED WORK

Sequential question answering has been studied in the knowledge base setting (Iyyer et al., 2017;
Saha et al., 2018; Talmor & Berant, 2018), often framed as a semantic parsing problem. Recent
datasets (Choi et al., 2018; Reddy et al., 2018; Elgohary et al., 2018; Saeidi et al., 2018) enabled
studying it in the textual setting, where the information source used to answer questions is a given
article. Existing approaches attempted on these datasets are often extensions of strong single-turn
models, such as BiDAF (Seo et al., 2016) and DrQA (Chen et al., 2017), with some manipulation
of the input. In contrast, we propose a new architecture suitable for multi-turn MC tasks by passing
the hidden model representations of preceding questions using the FLOW design.

Dialogue response generation requires reasoning about the conversation history as in conversational
MC. This has been studied in social chit-chats (e.g., Ritter et al., 2011; Li et al., 2017; Ghazvininejad
et al., 2018) and goal-oriented dialogs (e.g., Bordes & Weston, 2016; Lewis et al., 2017). Prior
work also modeled hierarchical representation of the conversation history (Park et al., 2018; Suhr
& Artzi, 2018). While these tasks target reasoning with the knowledge base or exclusively on the
conversation history, the main challenge in conversational MC lies in reasoning about context based
on the conversation history, which is the main focus in our work.

7 CONCLUSION

We presented a novel FLOW component for conversational machine comprehension. By applying
FLOW to a state-of-the-art machine comprehension model, our FLOWQA is able to encode the con-
versation history more comprehensively, and thus yields better performance. When evaluated on
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two recently proposed conversational challenge datasets and three domains of a sequential instruc-
tion understanding task (through reduction), FLOWQA outperforms all current best models.

While our approach provides a substantial performance gain, there is still room for improvement.
In the future, we would like to investigate even more efficient and fine-grained ways to model the
conversation flow, as well as methods that enable machines to engage an more active and natural
conversational behaviors, such as asking clarification questions.
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A IMPLEMENTATION DETAILS

A.1 CONVERSATIONAL QUESTION ANSWERING

We make use of spaCy for tokenization. We additionally fine-tuned the GloVe embeddings of the top
1000 frequent question words. During training, we use a dropout rate of 0.4 (Srivastava et al., 2014)
after the embedding layer (GloVe, CoVe and ELMo) and before applying any linear transformation.
In particular, we share the dropout mask when the model parameter is shared, which is also known
as variational dropout (Gal & Ghahramani, 2016). We batch the dialogs rather than individual
questions. The batch size is set to one dialog for CoQA (since there can be as much as 20+ questions
in each dialog), and three dialog for QuAC (since the question number is smaller). The optimizer is
Adamax (Kingma & Ba, 2015) with a learning rate α = 0.002, β = (0.9, 0.999) and ε = 10−8. A
fixed random seed is used across all experiments. All models are implemented in PyTorch (http:
//pytorch.org/). We use a maximum of 20 epochs, with each epochs passing through the data
once. It roughly takes 10 to 20 epochs to converge.
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A.2 SEQUENTIAL SEMANTIC PARSING

We begin by elaborating the simplification for FlowQA for the sequential semantic parsing task.
First, we use the 100-dim GloVe embedding instead of the 300-dim GloVe and we did not use any
contextualized word embedding. The GloVe embedding is fixed throughout the training. Secondly,
the embedding for tokens in the context C are trained from scratch, since C consists of synthetic
tokens. Also, we removed word-level attention because the tokens in contexts and questions are
very different (one is synthetic, while the other is natural language). Additionally, we removed self-
attention since we find it unhelpful in this reduced QA setting (we speculate it’s because the context
here is usually very short). We use the same hidden size for both integration LSTMs and Flow
GRUs. But we tune the hidden size for the three domains independently. In SCENE, we use hidden
size of h = 100. In TANGRAMS, we use h = 75. And in ALCHEMY, we use h = 50. We also batch
by dialog and use a batch size of 8. A dropout rate of 0.3 is used and is applied before every linear
transformations.

Environment for the Three Domains In SCENE, each environment has ten positions with at most
one person at each position. The domain covers four actions (enter, leave, move, and trade-hats) and
two properties (hat color, shirt color). In TANGRAMS, the environment is a list containing at most
five shapes. This domain contains three actions (add, move, swap) and one property (shape). Lastly,
in ALCHEMY, each environment is seven numbered beakers and covers three actions (pour, drain,
mix) dealing with two properties (color, amount).

Reducing World State to Context Now, we give details on the encoding of context from the
world state. In SCENE, there are ten positions. For each position, there could be a person with shirt
and hat, a person with a shirt, or no person. We encode each position as two integers, one for shirt
and one for hat. (so the context length is ten) Both integer take the value that corresponds to being
a color or being empty. In TANGRAMS, originally there are five images. But some commands could
reduce the number of images or bring back removed images. Since the number of images present
is no greater than five, we always have five positions available (so the context length is five). Each
position consists of an integer, representing the ID of the image, and a binary feature. Every time
an image is removed, we append it at the back. The binary feature is used to indicate if the image
is still present or not. In ALCHEMY, there are always seven beakers. So the context length is seven.
Each position consists of two numbers, the color of the liquid at the top unit and the number of units
in the beaker. An embedding layer is used to turn each integers into a 10-dim vector.

Reducing the Logical Form to Answer Next, we encode the change of world state (i.e., the
answer) into four integers. The first integer is the type of action that’s performed. The second and
third integer represent the position of the context, which the action is acted upon. And the fourth
integer represents additional property for action performed. For example, in the ALCHEMY domain,
we use (0, i, j, 2) to mean “pour 2 units of liquid from beaker i to beaker j”, and (1, i, i, 3) to mean
“throw out 3 units of liquid in beaker i”.
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